|
Ⅰ.考查目标
数学分析与线性代数是生物信息学及相关专业的一门基础课程。该课程主要由数学分析和线性代数两部分组成,通过对数学分析的学习,使学生系统地获得函数、极限、连续、微积分等方面的基本概念、基本理论和基本运算技能,通过对线性代数的学习,使学生全面的理解和掌握线性相关、线性方程组、矩阵特征值和特征向量等方面的基础知识、基本理论和基本计算方法,为学习后继课程和进一步获得数学知识奠定必要的数学基础。在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。
Ⅱ.参考书
《医用高等数学》第2版 李霞,彭继世主编 北京大学医学出版社,2018年
《医用高等数学》第一版.李霞、贺东奇、姜伟主编.北京大学医学出版社.2013年12月
《医用高等数学》第一版.郭政、韩桂秋、王慕洁主编.黑龙江科学技术出版社.2000年8月
《线性代数及其应用》第三版.(美)莱(Lay,D.C.)著;刘深泉等译 机械工业出版社,2005年
《高等数学》第二版.李忠、周建莹主编.北京大学出版社.2014年5月
《数学分析》第四版.华东师范大学数学系主编.高等教育出版社.2012年5月
Ⅲ.考试形式和试卷结构
答卷方式咨询QQ、微信:2544906法、分部积分法、有理式的不定积分。
(二)定积分的计算咨询QQ、微信:2544906法、分部积分法。
(三)积分的应用咨询QQ、微信:2544906素法、平面图形的面积、旋转体的体积、平面曲线的弧长。
【基本要求】
1. 掌握并会利用第一类、第二类换元法,分部积分法解决不定积分问题,熟悉有理函数和三角函数有理式的积分计算方法。
2. 掌握并会利用换元法、分部积分法解决定积分问题。
3. 能熟练使用积分解决应用问题,熟悉定积分的元素法,会利用定积分计算平面图形的面积、旋转体的体积和平面曲线的弧长。
(四)微分中值定理与泰勒公式
【基本内容】
(一)微分中值定理咨询QQ、微信:2544906函数微分学
【基本内容】
(一)多元函数咨询QQ、微信:2544906函数、n元函数
(二)多元函数的极限咨询QQ、微信:2544906函数的极限运算法则、基本性质
(三)多元函数的连续性咨询QQ、微信:2544906初等函数、有界闭区域上连续函数的性质
(四)偏导数咨询QQ、微信:2544906函数微分学咨询QQ、微信:2544906函数微分学咨询QQ、微信:2544906函数的极值、计算步骤、条件极值和Lagrange乘数法
【基本要求】
1. 理解空间直角坐标系、平面点集、边界点的定义,掌握二元函数、n元函数的概念及其对应的空间图像,熟悉几种常见的曲面及其方程。
2. 掌握多元函数极限的定义及其基本性质,会利用极限存在准则判定二元函数极限存在或不存在,并会熟练利用二元函数的极限运算法则计算二元函数的极限。
3. 掌握多元函数的连续性的概念,理解断点的定义,熟悉四则运算保持函数连续性、复合函数的连续性、多元初等函数、有界闭区域上连续函数的性质,会利用定义判定多元函数极限存在或不存在。
4. 掌握偏导数的定义,并会计算多元函数的一阶偏导数以及高阶偏导数,理解偏导数的几何意义。
5. 掌握全微分的定义和性质,了解二元函数可微与连续的条件,熟悉可微与偏导数之间的关系及全微分在数值计算中的应用。
6. 熟悉多元复合函数的常见形式,会使用连锁法则对复合函数求导;会使用隐函数微分法对隐函数求导。会计算复合函数的全微分。
7. 掌握方向导数、梯度的定义,熟悉方向导数的计算公式和梯度计算的运算法则并能运用于计算,理解方向导数与偏导数的关系。
8. 会利用极限存在准则判定多元函数极限存在或不存在,掌握多元函数的极限计算步骤,能熟练计算多元函数的极限以及条件极值;掌握拉格朗日乘数法,并能运用于条件极值的计算。
(七)重积分
【基本内容】
(一)二重积分咨询QQ、微信:2544906法求解线性方程组。
(三)齐次线性方程组有非零解和非齐次线性方程组有解的充分必要条件,解的求法
(四)线性无关咨询QQ、微信:2544906法求解线性方程组。
3. 理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件,理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法,理解非齐次线性方程组解的结构及通解的概念。
4. 理解线性相关、线性无关的概念,掌握线性相关、线性无关的有关性质及判别法。
(十二)矩阵代数
【基本内容】
(一)矩阵:基本概念、基本矩阵运算
(二)逆矩阵:定义、特征、求法、基本行(列)运算、初等矩阵、伴随矩阵
(三)矩阵初等变换:概念、初等矩阵、矩阵等价、矩阵的秩
(四)特殊矩阵:概念,性质
【基本要求】
1. 掌握矩阵的基本概念,熟悉乘、加、系数相加、矩阵相乘等基本矩阵运算,了解转置矩阵,能运用运算法则计算转置矩阵。
2. 掌握逆矩阵的定义以及意义,了解其特征以及存在的充分必要条件,熟悉其求法,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
3. 掌握矩阵初等变化的概念,理解初等矩阵与矩阵等价的概念,了解矩阵的秩的含义,能通过初等变换求矩阵的秩和矩阵的逆。
4. 掌握几种特殊矩阵(零矩阵,单位矩阵,对角矩阵,对称矩阵,上、下三角矩阵,稀疏矩阵等)并能熟练运用其性质。
(十三)行列式
【基本内容】
(一)行列式:定义、行列式的性质
(二)行列式的计算:计算、行列式的展开
【基本要求】
1. 掌握行列式的概念,了解行列式的性质。
2. 会利用行列式的性质和行列式按行(列)展开定理计算行列式。
(十四)向量空间
【基本内容】
(一)向量:n维向量概念、向量的线性组合
(二)向量组:概念、向量组线性相关性、极大线性无关组、向量组的秩
(三)向量空间:定义、性质、向量空间的封闭性
(四)子空间:定义、子空间的充要条件
(五)向量空间的基、维数与向量坐标:概念、基变换和坐标变换
【基本要求】
1. 掌握n维向量的概念,理解向量的线性组合与线性表示的概念。
2. 掌握向量组的概念,理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别方法。掌握向量组的极大线性无关组和向量组的秩的概念,并会计算向量组的极大线性无关组及秩。
3. 掌握向量空间的定义和性质,理解向量加法和数乘运算的封闭性。
4. 掌握子空间的定义,理解子空间的充要条件,掌握子空间的判别方法。
5. 掌握向量空间的基、维数与向量坐标的概念,会计算有限维向量空间的基和维数,了解基变换和坐标变换的公式,会求过渡矩阵。
(十五)特征值与特征向量
【基本内容】
(一)特征值与特征向量:矩阵的特征值和特征向量的概念、性质。
(二)相似矩阵:相似矩阵的实义与性质。
(三)矩阵可相似对角化的充分必要条件及相似对角矩阵。
(四)实对称矩阵的特征值和特征向量及相似对角矩阵。
【基本要求】
1. 理解实方阵的特征值和特征向量的定义,理解实方阵的特征值和特征向量的性质,会求给定矩阵的特征值和特征向量。
2. 理解矩阵相似的定义,掌握相似矩阵的性质,
3. 熟知n阶实方阵相似于对角矩阵的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。熟知n阶实方阵相似于对角矩阵的一个充分条件:A有n个互不相同的特征值。
4. 掌握实对称矩阵的特征值和特征向量的性质,了解实对称矩阵必正交相似于对角矩阵,会求实对称矩阵的正交相似标准形。
(十六)正交性和最小二乘法
【基本内容】
(一)线性空间内积:线性空间内积的概念、性质,及其运算。
(二)标准正交基:标准正交基的概念和求法,标准正交基下度量矩阵、向量坐标及内积的特殊表达。
(三)正交矩阵的概念及性质,正交矩阵与标准正交基的过度矩阵的关系。
(四)正交变换的概念与性质,正交变换和正交矩阵的关系,正交子空间,正交补的概念及性质。
(五)同构的概念与最小二乘法。
【基本要求】
1. 掌握线性空间内积的概念及性质,理解欧几里德空间的概念,了解欧几里德空间中向量的正交,了解欧几里德空间中基的度量矩阵及其用途。
2. 理解标准(规范)正交基的概念,掌握标准(规范)正交基的求法(施密特正交化过程),了解标准正交基下度量矩阵、向量坐标及内积的特殊表达。
3. 掌握正交矩阵的概念及性质,了解正交矩阵与标准正交基的过渡矩阵之间的关系。
4. 理解正交变换的概念及其性质,了解正交变换和正交矩阵之间的关系,理解正交子空间、正交补的概念及性质。
5. 了解同构的概念,熟练掌握最小二乘法的运算方法。
(十七)对称矩阵和二次型
【基本内容】
(一)对称矩阵对角化:步骤与方法。
(二)二次型及其矩阵表示、合同变换与合同矩阵、二次型的秩、惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性。
【基本要求】
1. 熟练掌握对称矩阵对角化的步骤与方法。
2. 了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。 |
|