111考研网论坛

 找回密码
 立即注册
考研面试增加印象分,实用新型专利包过申请发明专利申请并不难,代写全部材料,轻松申请!包过加急版发明专利申请,保研、考研面试加分利器!破格复试、破格录取交流
查看: 478|回复: 0

导师信息#北京工业大学数理学院数学导师介绍#李云章

[复制链接]
发表于 2019-12-7 00:29:24 | 显示全部楼层 |阅读模式
发明专利申请,代写全部材料。
李云章,男,1966年生,教授, 博士生导师,基础数学学科责任教授,德国《Zentralblatt MATH》评论员;1998年浙江大学数学系博士毕业,获博士学位,研究方向:小波分析;2004.2---2005.2访问加拿大麦克玛斯特大学(McMaster University)数学与统计系;研究领域涉及小波分析与Gabor分析。主持完成和主持在研国家自然科学基金、教育部留学回国人员科研启动基金、北京市自然科学基金、北京市中青年骨干教师基金、北京市优秀人才基金、北京市教委基金、北京市留学人员科技活动择优资助项目等多项国家级和省部级项目。在《J. Funct. Anal.》、《J. Fourier Anal. Appl.》、《J. Math. Phys.》、《J. Math. Anal. Appl.》、《J. Approx. Theory》、《Proc. Amer. Math. Soc.》、《Num. Func. Anal. Optim.》、《Acta Appl. Math.》、《Comm. Pure Appl. Anal.》、《Adv. Comput. Math.》、《Int. J. Wavelets Multiresolut. Inf. Process.》、《Abstr. Appl. Anal.》、《Appl. Math. Comput.》、《Kyoto J. Math..》、《Kodai Math. J.》、《Sci. China Math.》、《Acta. Math. Sinica》等国内外学术期刊发表论文50余篇, 多篇被SCI收录。
Email: yzlee@bjut.edu.cn
Tel.: (010) 67392180----209
部分SCI论文:
[1]The construction of multivariate periodic wavelet bi-frames. J. Math. Anal. Appl. 412 (2014), no. 2, 852–865. (withHui-Fang Jia)
[2]Rational time-frequency multi-window subspace Gabor frames and their Gabor duals. Sci. China Math. 57 (2014), no. 1,145–160. (with Yan Zhang)
[3]Rational time-frequency Gabor frames associated with periodic subsets of the real line. Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), no. 2, 1450013, 15 pp. (with Jean-Pierre Gabardo )
[4]Super Gabor frames on discrete periodic sets, Adv. Comput. Math. 38 (2013), no. 4, 763–799. (with Qiao-Fang Lian)
[5]Rational time-frequency super Gabor frames and their duals, J. Math. Anal. Appl. 403 (2013), no. 2, 619–632. (with Feng-Ying Zhou)
[6]Lattice tiling and density conditions for subspace Gabor frames. J. Funct. Anal. 265 (2013), no. 7, 1170–1189. (withJean-Pierre Gabardo and Deguang Han )
[7]The equivalence between seven classes of wavelet multipliers and arcwise connectivity they induce. J. Fourier Anal. Appl. 19 (2013), no. 5, 1060–1077. (with Yan-Qin Xue)
[8]Super oblique Gabor duals of super Gabor frames on discrete periodic sets, Num. Func. Anal. Optim., 34(2013), no. 3, 284–322. (with Qiao-Fang Lian)
[9]Rational time-frequency vector-valued subspace Gabor frames and Balian-Low theorem, Int. J. Wavelets Multiresolut. Inf. Process., 11(2013), no.1, 1350013, 23pp. (with Yan Zhang)
[10]Generalized multiresolution structures in reducing subspaces of $L^2(Bbb R^d)$, Sci. China Math., 56(2013), 619–638. (with Feng-Ying Zhou)
[11]Discrete subspace multiwindow Gabor frames and their duals. Abstr. Appl. Anal. 2013, Art. ID 357242, 17 pp. (withYan Zhang)
[12]An embedding theorem on reducing subspace frame multiresolution analysis. Kodai Math. J. 35 (2012), no. 1, 157–172. (with Lin Zhang)
[13]Gabor families in $l^2(Bbb Z^d)$, Kyoto J. Math. 52 (2012), no. 1, 179–204. (with Qiao-Fang Lian)
[14]Supports of Fourier transforms of refinable frame functions and their applications to FMRA. Acta Math. Appl. Sin. Engl. Ser. 28 (2012), no. 4, 757–768. (with Chun-Hua Han)
[15]Construction of a class of multivariate compactly supported wavelet bases for . Front. Math. China 7 (2012), no. 1,177–195. (with Feng-Ying Zhou)
[16]The characterization of a class of multivariate MRA and semi-orthogonal Parseval frame wavelets, Appl. Math. Comput., 217(2011), no. 22, 9151–9164 . (with Feng-Ying Zhou)
[17]Gabor frame sets for subspaces, Adv. Comput. Math, 34(2011), no. 4, 391–411. (with Qiao-Fang Lian)
[18]GMRA-based construction of framelets in reducing subspaces of $L^2(Bbb R^d)$, Int. J. Wavelets Multiresolut. Inf. Process., 9 (2011), no. 2, 237–268. (with Feng-Ying Zhou)
[19]Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets,Sci. China Math., 54(2011), no. 5, 987–1010. (with Qiao-Fang Lian)
[20]On the aliasing error in a class of bidimensional wavelet subspaces. Appl. Math. J. Chinese Univ. Ser. B 26 (2011),no. 1, 77–85. (with Hui-Min Liu)
[21]Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of $L^2(Bbb R^d)$, Kyoto J. Math., 50 (2010), no. 1, 83–99 . (with Feng-Ying Zhou)
[22]Gabor systems on discrete periodic sets. Sci. China Ser. A 52 (2009), no. 8, 1639-1660. (with Qiao-Fang Lian)
[23]Density results for Gabor systems associated with periodic subsets of the real line. J. Approx. Theory 157 (2009),no. 2, 172--192. (with Jean-Pierre Gabardo)
[24]The duals of Gabor frames on discrete periodic sets. J. Math. Phys. 50 (2009), no. 1, 013534, 22 pp.(with Qiao-Fang Lian)
[25]Tight Gabor sets on discrete periodic sets. Acta Appl. Math. 107 (2009), no. 1-3, 105--119. (with Qiao-Fang Lian)
[26]The spectrum sequences of periodic frame multiresolution analysis. Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 3,403--418. (with Qiao-Fang Lian)
[27]Holes in the spectrum of functions generating affine systems. Proc. Amer. Math. Soc., 135(2007), no. 6, 1775--1784 (with Jean-Pierre Gabardo)
[28]Reducing subspace frame multiresolution analysis and frame wavelets. Commun. Pure Appl. Anal. 6 (2007), no. 3, 741--756. (with Qiao-Fang Lian)
[29]A class of bidimensional FMRA wavelet frames. Acta Math. Sin. (Engl. Ser.), 22 (2006), no.4, 1051-1062
[30]On the construction of a class of bidimensional nonseparable compactly supported wavelets. Proc. Amer. Math. Soc.133 (2005), no. 12, 3505—3513
[31]A note on Gabor orthonormal bases. Proc. Amer. Math. Soc. 133 (2005), no. 8, 2419-2428
[32]A remark on the orthogonality of a class bidimensional nonseparable wavelets. Acta Math. Sci. Ser. B Engl. Ed. 24(2004), no. 4, 569–576.
[33]On the holes of a class of bidimensional nonseparable wavelets. J. Approx. Theory, 125 (2003), no. 2, 151--168.
[34]On a class of bidimensional nonseparable wavelet multipliers. J. Math. Anal. Appl., 270 (2002), no. 2, 543--560.
[35]A class of bidimensional nonseparable wavelet packets. Acta Math. Sci. Ser. B Engl. Ed. 22 (2002), no. 1, 131–137 (with Xiongfei Tian)
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|111考研网论坛

GMT+8, 2025-2-3 15:54

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表