|
数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上的,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。
同时,有一个科学的学习计划,才能迅速的更有效率的掌握数学知识。因此,我们按照这个原则制定了详尽的数学学习计划,使得同学们能够迅速的巩固基础知识,循序渐进,加快数学学习的步伐。为今后数学水平的提高打下一个坚实的基础。在研究生考试过程中先人一步,胜人一筹。
一、 数学二 试卷结构
此试卷结构参考往年考研大纲
种类 | 内容比例 | 题型比例 | 数学二 | 高等数学约78% 线性代数约22% | 填空题与选择题约37% 解答题(包括证明题)约63% | 二、 数学复习全年规划
第一阶段 夯实基础,全面复习
主要目标咨询QQ、微信:2544906测试题,单元测试题是准确把握学员是否按照大纲要求掌握了本章内容。学员在做复习完每章内容后,跟主管顾问要本章测试题。测试题做完后一定要把成绩反馈给你的主管顾问,以便主管顾问和教研组老师根据你的复习情况及时调整你的学习方法与内容。
(4) 同学们在复习的时候一定要和你周围的同学、老师多交流学习心得。只有你总结出来的方法才是最适合你的方法。
(5) 同学们在复习的过程中肯定要遇到一些疑难问题、做错的题目,一定要在第一时间整理到你的笔记本里,方便的时候可以答疑。
高等数学
第一章 函数与极限(10天)
微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。
日期 | 学习时间 | 复习知识点与对应习题 | 大纲要求 | 第一周 - 第二周 | 2.5-3.5小时 | 函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式. 习题1-1咨询QQ、微信:2544906函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。
日期 | 学习时间 | 复习知识点与对应习题 | 大纲要求 | 第二章 - 第三周 | 2.5-3.5小时 | 导数的定义、几何意义、力学意义,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平面曲线的切线方程和法线方程. 例3-例7 习题2-1咨询QQ、微信:2544906函数微分学的简单应用 例1-例6 习题2-5咨询QQ、微信:2544906函数的最值问题(三种情形)。例1-例3 习题3-6咨询QQ、微信:2544906积分法和分部积分法是最基本的方法。
日期 | 学习时间 | 复习知识点与对应习题 | 大纲要求 | 第五周-第六周 | 2.5-3.5小时 | 原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性,原函数的几何意义和力学意义例1-例16 习题4-1咨询QQ、微信:2544906积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. | 2.5-3.5小时 | 不定积分的换元积分法,第二类换元法 例1-例27 | 2.5-3.5小时 | 不定积分的计算 习题4-2咨询QQ、微信:2544906测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。 | 第五章咨询QQ、微信:2544906积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.了解广义反常积分的概念,会计算广义反常积分. | 2.5-3.5小时 | 微积分的基本公式 积分上限函数及其导数 牛顿-莱布尼兹公式 例1-例8 习题5-2咨询QQ、微信:2544906法与分部积分法 例1-例10 习题5-3咨询QQ、微信:2544906测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。 | 第六章咨询QQ、微信:2544906素法 一元函数积分学的几何应用(求平面曲线的弧长与曲率,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转面的面积)例1-例14 | 1. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等)及函数的平均值等. | 2.5-3.5小时 | 定积分应用的一些计算 习题6-2咨询QQ、微信:2544906测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性对本章的内容进行复习或者到总部答疑。 |
|
|