111考研网论坛

 找回密码
 立即注册
考研面试增加印象分,实用新型专利包过申请发明专利申请并不难,代写全部材料,轻松申请!包过加急版发明专利申请,保研、考研面试加分利器!破格复试、破格录取交流
查看: 1249|回复: 0

参考书目#2019-2025年华南理工大学625数学分析考研究生大纲及参考书目 ...

[复制链接]
发表于 2019-6-6 20:46:51 | 显示全部楼层 |阅读模式
发明专利申请,代写全部材料。
从华南理工大学研究生院获悉,2019年华南理工大学625数学分析考试大纲及参考书目公布,内容如下咨询QQ、微信:2544906积分法、分部积分法,有理函数积分法,三角函数有理式的积分法,几种无理根式的积分。
8.定积分牛顿——莱布尼茨公式,可积的必要条件,可积的充要条件,可积函数类。绝对可积性,积分中值定理,微积分学基本定理。换元积分法,分部积分法。
9.定积分的应用简单平面图形面积。有平行截面面积求体积,曲线的弧长与微分。微元法、旋转体体积与侧面积,物理应用(引力、功等)。
10.反常积分无穷限反常积分概念、柯西准则,绝对收敛、无穷限反常积分收敛性判别法咨询QQ、微信:2544906函数的极限和连续平面点集概念(邻域、内点、界点、开集、闭集、开域、闭域),平面点集的基本定理——区域套定理、聚点原理、有限覆盖定理。二元函数概念。二重极限、累次极限,二元函数的连续性、复合函数的连续性定理、有界闭域上连续函数的性质。
16.多元函数的微分学偏导数及其几何意义,全微分概念,全微分的几何意义,全微分存在的充分条件,全微分在近似计算中的应用,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,混合偏导数与其顺序无关性,高阶导数,高阶微分,二元函数的泰勒定理,二元函数的极值。
17.隐函数定理隐函数概念、隐函数定理、隐函数求导。隐函数组概念、隐函数组定理、隐函数组求导、反函数组与坐标变换,函数行列式。几何应用,条件极值与拉格朗日乘数法。
18.含参量积分含参量积分概念、连续性、可积性与可微性,积分顺序的交换。含参量反常积分的收敛与一致收敛,一致收敛的柯西准则。维尔斯特拉斯(Weierstrass)判别法。连续性、可积性与可微性,Gamma函数。
19.曲线积分第一型和第二型曲线积分概念与计算,两类曲线积分的联系。
20.重积分二重积分定义与存在性,二重积分性质,二重积分计算(化为累次积分)。格林(Green)公式,曲线积分与路径无关条件。二重积分的换元法(极坐标与一般变换)。三重积分定义与计算,三重积分的换元法(柱坐标、球坐标与一般变换)。重积分应用(体积,曲面面积,重心、转动惯量、引力等)。无界区域上的收敛性概念。无界函数反常二重积分。在一般条件下重积分变量变换公式。
21.曲面积分曲面的侧。第一型和第二型曲面积分概念与计算,高斯公式。斯托克斯公式。场论初步(梯度场、散度场、旋度场)。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|111考研网论坛

GMT+8, 2025-2-7 23:45

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表